© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

EVALUATION OF FPC-1® FUEL PERFORMANCE CATALYST

at

A.T. MASSEY, SPROUSE CREEK MINE

Report Prepared by

UHI CORPORATION
PROVO, UTAH,
and
FPC UNLIMITED
ASHLAND, KENTUCKY

July 21, 1994

CONTENTS

INTRODUCTION	3
EQUIPMENT	3
TEST INSTRUMENTS	3
TEST PROCEDURE	4
DISCUSSION	4
CONCLUSION	5
APPENDICES:	7
Carbon Balance Method Technical Approach	
Computer Printouts and Calculation of Engine Performance Factors (Exhaust Mass Flow Rates).	
Table 1 Summary of Carbon Mass Balance Fuel Consumption Changes	
Table 2 Comparison of Smoke Numbers	
Figure 1 Carbon Balance Formulae	
Figure 2 Sample Calculation	
Raw Data Work Sheets	

INTRODUCTION

FPC-1° is a combustion catalyst which, when added to liquid hydrocarbon fuels at a ratio of 1:5000, improves the combustion reaction resulting in increased engine efficiency and reduced fuel consumption. The products of incomplete combustion are also positively affected.

Field and laboratory tests alike indicate a potential to reduce fuel consumption in diesel fleets in the range of 5% to 10%. Smoke and carbon monoxide emissions are typically reduced 15 to 30%. This report summarizes the results of controlled back-to-back field tests conducted by UHI Corporation, FPC Unlimited, with and without FPC-1® added to the diesel fuel. The fuel consumption determination procedure applied was the <u>Carbon Balance Exhaust Emission Test</u> at a given engine load and speed. This same method also measures the exhaust concentrations of carbon monoxide and unburned hydrocarbons. Smoke testing was also conducted using the Bacharach Smokemeter method.

EQUIPMENT TESTED

- 2 x Caterpillar dozers powered by 3412 engines
- 1 x locomotive powered by an EMD 567 engine

TEST INSTRUMENTS:

The equipment and instruments involved in the carbon balance test program were:

Sun Electric SGA-9000 non-dispersive, infrared analyzer (NDIR) for measuring the exhaust gas constituents, HC (unburned hydrocarbons as hexane gas), CO, CO₂, and O₂.

Scott Specialty BAR 90 calibration gases for SGA-9000 internal calibration of the SGA-9000.

A Fluke Model 51 type "k" thermometer and wet/dry probe for measuring exhaust, fuel, and ambient temperature.

A Dwyer magnehelic and pitot tube for exhaust pressure differential measurement and exhaust air flow determination (CFM).

A Monarch phototachometer to determine and control engine speed (rpm).

A Bacharach True-Spot smokespot meter to determine the density of exhaust smoke from diesel engines.

A hydrometer for fuel specific gravity (density) measurement.

A Hewlett Packard Model 42S programmable calculator for the calculation of the engine performance factors.

A Snap On throttle control for setting and holding engine speed at a fixed rpm.

TEST PROCEDURE

Carbon Balance

The carbon balance technique for determining changes in fuel consumption has been recognized by the US Environment Protection Agency (EPA) since 1973 and is central to the EPA-Federal Test Procedures (FTP) and Highway Fuel Economy Test (HFET). The method relies upon the measurement of vehicle exhaust emissions to determine fuel consumption rather than direct measurement (volumetric or gravimetric) of fuel consumption.

The application of the carbon balance test method utilized in this study involves the measurement of exhaust gases of a stationary vehicle under steady-state engine conditions. The method produces a value of engine fuel consumption with FPC-1* relative to a baseline value established with the same vehicle.

Engine speed and load are duplicated from test to test, and measurements of carbon containing exhaust gases (CO_2 , CO, HC), oxygen (O_2), exhaust and ambient temperature, and exhaust and ambient pressure are made. A minimum of five readings are taken for each of the above parameters after engine stabilization has taken place (rpm, and exhaust, oil, and water temperature have stabilized). The technical approach to the carbon balance method is detailed in the Appendices.

Fuel specific gravity or density is measured enabling corrections to be made to the final engine performance factors based upon the energy content of the fuel reaching the injectors.

Smoke density was determined by drawing a fixed quantity of exhaust gases through a filter medium. The particulate's were collected onto the filter surface and the density determined by comparing the discoloration of the filter paper to a color calibrated scale.

Two dozers and one locomotive made up the final test fleet. The locomotive was tested at three throttle settings. Table 1 in the Appendices summarizes the percent change in fuel consumption based upon the change in carbon flow rate in the exhaust.

DISCUSSION

1. Fuel Density

Fuel specific gravity (density) was during the baseline carbon balance test only, and was not taken during the treated fuel test, therefore, there is no correction possible for any change in fuel density. However, many years experience has shown fuel density changes only slightly during the same season (in this case between April and July), and these changes have little impact upon fuel consumption.

2. The Effect of FPC-1 upon Smoke Density

Smoke density was determined using the Bacharach smoke spot method. The Bacharach True-Spot Smokemeter measures smoke density by drawing a specific volume of exhaust gas through a fine paper filter medium (5 micron) while the engine is operating at a fixed rpm and under

steady-state engine conditions. The smoke particles are trapped on the surface of the filter paper as the exhaust gases are drawn through it forming a darkened area called a "smoke spot". The filter paper is then removed from the smoke tester and the smoke spot visually compared to a precoded smoke scale. A smoke number is then assigned to the smoke spot according to the darkness of the spot. The smoke number scale ranges from 0 to 9. Higher smoke numbers correspond to darker smoke spots, which correspond to a greater smoke density in the exhaust. The baseline and treated fuel smoke spot numbers are found on Table 2 in the Appendices.

A reduction in smoke is prime evidence of improved combustion (Germane, SAE Technical Paper # 831204). Further, reduced exhaust smoking has been shown to be one of first evidences that engine carbon residue and soot blowby into the motor oil are also being reduced (ibid). The reductions in exhaust smoke are logical extensions of improved combustion created by FPC-1.

3. Volumetric Flowrate (Pitot Tube Readings)

The final calculation for determining the fuel flow rate or mass flow rate of the fuel into the engine takes into consideration the temperature and pressure velocity of all the gases in the exhaust. The exhaust gas temperature is recorded using a digital thermometer and thermocouple that is very accurate and easily fixed into place inside the exhaust stack. The pressure velocity readings are more difficult to measure because the pitot tube cannot be fixed inside the stack necessitating the use of a traversing method to locate the center velocity (the theoretical point of highest exhaust gas velocity). Therefore, the pitot tube readings are considered the least accurate and serve only as an indicator of engine speed or rpm.

The changes in the rate of fuel consumption shown are Table 1 are based upon carbon mass change in the exhaust alone, without correcting for exhaust volumetric flow rate (temperature and pressure). Since exhaust temperature and barometric pressure where virtually identical and engine speed was identical from test to test, exhaust pressure velocity is assumed to be constant from baseline to treated tests.

CONCLUSIONS

- 1) The fuel consumption change determined by the carbon balance method ranged from 5.69 to 12.89%. The fleet averaged a 9.34% reduction in fuel consumed after FPC-1 fuel treatment and engine preconditioning.
- 2) Smoke density was reduced approximately in the Cat engines 22%, while the EMD experienced a 57% average reduction. The fleet averaged a 43% reduction in smoke density after FPC-1 fuel treatment.

APPENDICES

CARBON BALANCE METHOD TECHNICAL APPROACH:

All test instruments were calibrated and zeroed prior to both baseline and treated fuel data collection. The SGA-9000 NDIR exhaust gas analyzer was internally calibrated using Scott Calibration Gases (BAR 90 Gases), and a leak test on the sampling hose and connections was performed. The same procedure was repeated after each test segment to determine any instrument drift.

Each vehicle's engine was brought up to operating temperature at a set rpm and allowed to stabilize as indicated by the engine water and exhaust temperature, and exhaust pressure. No exhaust gas measurements were made until each engine had stabilized at the rpm selected for the test. Engine rpm was set using the dash mounted tachometer (with the exception of shovel's #1 and #4) and checked periodically to prevent any change in engine speed during the data collection period. #2 diesel was used exclusively throughout the evaluation. Fuel specific gravity (density) and temperature were also taken.

The baseline fuel consumption test consisted of a minimum of five sets of measurements of CO_2 , CO, HC, O_2 , and exhaust temperature and pressure made at 90 second intervals. Each engine was tested in the same manner. Engine rpm were also recorded at approximately 90 second intervals.

After the baseline test the fuel storage tanks were treated with FPC-1® at the recommended level of 1 oz. of catalyst to 40 gallons of fuel (1:5000 volume ratio). Each succeeding fuel shipment was also treated with FPC-1®. The equipment was operated on treated fuel until the final test was run.

During the two test segments, an internal self-calibration of the exhaust analyzer was performed after every two sets of measurements to correct instrument drift, if any.

From the exhaust gas concentrations of CO_2 , CO, HC, and O_2 measured during the test, the average molecular weight of these gases, and the temperature and volumetric flow rate of the exhaust stream, the mass flow rate of the fuel to the engine (rate of fuel consumption) may be expressed as a engine "performance factor" which relates the fuel consumption of the treated fuel to the baseline. The calculations are based on the assumption that engine operating conditions are essentially the same throughout the test. Engines with known mechanical problems or having undergone repairs affecting fuel consumption are removed from the sample.

A sample calculation is found in Figure 2.

COMPUTER PRINTOUTS

Company Name:	A.T. M	Iassey Location	Sprouse Cr	eek	Date:	4/17/94
Test Portion:	Basel	line Stack Diam	8	Inches		
Engine Type:	CAT 3	3412 Mile/Hrs	18728			
Equipment Type:	Bull d	lozer ID #:	2		Baro	30.12
Fuel Sp. Gravity	(SG 0.83	300 Temp :				

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
Full Throttle	467.8	2.8	0.03	8	3.25	15.5	
Full Throttle	468.8	2.8	0.03	8	3.25	15.4	
Full Throttle	468.8	2.8	0.03	8	3.24	15.4	
Full Throttle	469.2	2.8	0.03	8	3.23	15.4	
Full Throttle	469.8	2.8	0.03	8	3.25	16.1	
Full Throttle	469.2	2.8	0.03	8	3.25	16.1	
Full Throttle	469.4	2.8	0.03	8	3.25	16.2	
Full Throttle	470	2.8	0.03	8	3.23	16.3	
Full Throttle	470.4	2.8	0.03	8	3.23	16.3	1,0000000000000000000000000000000000000
Full Throttle	469.8	2.8	0.03	8	3.23	16.3	
			1.7				
#DIV/0!	469.320	2.800	.030	8.000	3.241	15.900	Mean
#DIV/0!	0.743564986	0	0	0	0.00994429	0.4163332	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1
8.00E-06	0.0003	0.03241	0.159	29.155024	189,152

Company Name:	A.T. Massey	Location:	Sprouse Creek		Test Date:	7/17/94	
Test Portion:	Treated	Stack Diam:	8	Inches			
Engine Type:	CAT 3412	Mile/Hrs:	19958				
Equipment Type	Bull dozer	ID #:	2		Baro:	30.01	
Fuel Sp. Gravity:	0.83	Temp:	93		JONATONIA DI TANCONIA.		
SG Corr Factor	1				Time:	1830	

RPM	Exh Temp	Pv Inch	CO	liC	002	O2	
Full Throttle	467.6	2.6	0.03	6	2.97	15.8	
Full Throttle	467.4	2.6	0.03	6	2.97	15.8	
Full Throttle	467.4	2.6	0.03	6	2.95	15.7	
Full Throttle	467.6	2.6	0.03	6	2.95	15.7	
Full Throttle	467.8	2.6	0.03	7	2.94	15.7	
Full Throttle	467.8	2.6	0.03	6	2.94	15.7	
Full Throttle	468	2.6	0.03	6	2.92	15.8	
Full Throttle	468.4	2.6	0.03	6	2.92	16	
Full Throttle	468.4	2.6	0.03	6	2.92	16	
#DIV/0!	467.822	2.600	.030	6.111	2.942	15.800	Mean
#DIV/0!	0.380058475	0	0	0.33333333	0.01986063	0.12247449	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2
6.11E-06	0.0003	0.02942222	0.158	29.10311	207,847

Time:

1240

Company Name:	A.T. Massey	Location	Sprouse Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	8	Inches		
Engine Type:	CAT 3412	Mile/Hrs	15690			
Equipment Type:	Bull dozer	ID #:	1		Baro	30.12
Fuel Sp. Gravity(SG	0.8300	Temp:				

Time:

RPM	Exhitenip	Pv Inch	60	HC	CO2	O2	
Full Throttle	468.8	2.9	0.03	9	3.25	15.6	
Full Throttle	473.6	2.9	0.03	10	3.23	15.7	
Full Throttle	474.4	2.9	0.03	8	3.23	16	
Full Throttle	475	2.9	0.03	7	3.9	16	
Full Throttle	475	2.9	0.03	8	3.2	15.9	
Full Throttle	475.2	2.9	0.03	7	3.19	15.9	
Full Throttle	474.8	2.9	0.03	8	3.18	15.9	
Full Throttle	474.8	2.9	0.03	9	3.18	16.1	
Full Throttle	475.4	2.9	0.03	9	3.17	16.1	
Full Throttle	475.2	2.9	0.03	9	3.17	16.1	
#DIV/0!	474.220	2.900	.030	8.400	3.270	15.930	Mean
#DIV/0!	1.971913904	5.6196E-08	0	0.96609178	0.22310934	0.17029386	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1
8.40E-06	0.0003	0.0327	0.1593	29.1608872	187,516

Company Name:	A.T. Massey	Location:	Sprouse Creek		Test Date:	7/17/94
Test Portion:	Treated	Stack Diam:	8	Inches		
Engine Type:	CAT 3412	Mile/Hrs:	16838			
Equipment Type	Bull dozer	ID #:	1		Baro:	30.01
Fuel Sp. Gravity: SG Corr Factor:	0.83 1	Temp:	92.5		Time:	18:45

RPM	Exh Temp	Pv Inch	CO	H(0	€02	02	
Full Throttle	472.8	2.6	0.03	6	3.09	15.5	
Full Throttle	471.2	2.6	0.03	6	3.08	15.5	
Full Throttle	471.2	2.6	0.03	6	3.09	15.5	
Full Throttle	471	2.6	0.03	6	3.08	15.5	
Full Throttle	471	2.6	0.03	6	3.09	15.5	
Full Throttle	471.6	2.6	0.03	6	3.09	15.6	
Full Throttle	472.6	2.6	0.03	6	3.1	15.6	
Full Throttle	473	2.6	0.03	6	3.09	15.6	
~							
#DIV/0!	471.800	2.600	.030	6.000	3.089	15.538	Mean
#DIV/0!	0.855235974	0	0	0	0.0064087	0.05175492	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2
6.00E-06	0.0003	0.0308875	0.155375	29.116048	198,187

Company Name:	A.T. Massey	Location	Sprouce Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	12	Inches		
Engine Type:	EMD 567 D3	Mile/Hrs				
Equipment Type:	Locomotive	ID #:	2598		Baro	30.12
Fuel Sp. Gravity(SG	0.8300	Temp:			Time:	1110

Notei	Exhatemp	Pv Inch	(0)	HC	CO2	O2	
4	258.4	2.8	0.01	4	0.97	18.8	
4	258.8	2.8	0.01	4	0.97	18.8	
4	259.4	2.8	0.01	4	0.96	19	
4	259.6	2.8	0.01	3	0.96	19	
4	260.4	2.8	0.01	4	1.12	19	
4	262.4	2.7	0.01	4	0.95	19	
4	262.4	2.7	0.01	4	0.95	19	
4	262.6	2.8	0.01	3	0.95	19	
4.000	260.500	2.775	.010	3.750	.979	18.950	Mean
0	1.730400449	0.046291	1.24453E-10	0.46291005	0.0576783	0.09258201	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1
3.75E-06	0.0001	0.0097875	0.1895	28.9148175	620,066

Company Name:	A.T. Massey	Location:	Sprouce Creek		Test Date:	7/17/94
Test Portion:	Treated	Stack Diam:	12	Inches		
Engine Type:	EMD 567 D3	Mile/Hrs:				
Equipment Type	Locomotive	ID #:	2598		Baro:	30.04
Fuel Sp. Gravity:	0.83	Temp:	95.2			
SG Corr Factor:	1				Time:	1715

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
4	270	2.4	0.01	0	0.89	19.2	
4	270	2.4	0.01	0	0.89	19.1	
4	270	2.4	0.01	0	0.88	19.1	
4	270	2.4	0.01	0	0.88	19.1	
4	272.4	2.4	0.01	0	0.87	19	
4	273	2.4	0.01	0	0.87	19.1	
4.000	270.900	2.400	.010	.000	.880	19.100	Mean
0	1.407124728	0	0	0	0.00894427	0.06324555	Std De

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2
0.00E + 00	0.0001	0.0088	0.191	28.9048	690,301

Performance factor adjusted for fuel density:

690,301

**% Change PF= 11.33

Location Sprouce Creek Company Name: A.T. Massey Date: 4/17/94 Test Portion: Baseline Stack Diam. 12 Inches Engine Type: EMD 567 D3 Mile/Hrs Equipment Type: Locomotive ID #: 2598 Baro 30.12 Fuel Sp. Gravity(SG 0.8300 Temp:

Time:

Notch	Exh Temp	Pv Inch	CO	HC	CO2	O2	
6	293.8	5.3	0	2	1.24	18.8	
6	293.4	5.3	0.01	2	1.24	18.8	
6	294.8	5.3	0	2	1.24	18.8	
6	297.8	5.2	0.01	5	1.24	18.5	
6	298.6	5.2	0.01	6	1.24	18.4	
6	299.6	5.2	0.01	6	1.23	18.3	
6	300.8	5.2	0.01	6	1.24	18.2	
6.000	296.971	5.243	.007	4.143	1.239	18.543	Mean
0	2.956188022	0.05345225	0.0048795	2.03540098	0.00377964	0.2572751	Std Dev

 VFHC
 VFCO
 VFCO2
 VFO2
 Mtw1
 pf1

 4.14E-06
 7.14286E-05
 0.01238571
 0.185428571
 28.940126
 492,738

Company Name: A.T. Massey Location: Sprouce Creek Test Date: 7/17/94 Test Portion: Treated Stack Diam: 12 Inches Engine Type: EMD 567 D3 Mile/Hrs: 2598 Equipment Typ: Locomotive ID #: Baro: 30.04 Fuel Sp. Gravity: 0.83 Temp: 95.2 SG Corr Factor: Time: 1

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
6	316.8	4.9	0	0	1.18	18.6	
6	319	4.9	0.01	0	1.18	18.6	
6	317.6	4.9	0.01	0	1.18	18.6	
6	315.6	4.9	0.01	0	1.16	18.7	
6	315	4.9	0.01	0	1.15	18.7	
6	315.4	4.9	0.01	0	1.15	18.7	
6	315.2	4.9	0.01	1	1.15	18.7	
6	316.2	4.9	0	1	1.15	18.7	
6	321.6	4.9	0.01	0	1.14	18.6	
6	322.8	4.9	0.01	0	1.15	18.6	
6.000	317.520	4.900	.008	.200	1.159	18.650	Mean
0	2.766787146	1.1239E-07	0.00421637	0.42163702	0.01523884	0.05270463	Std De

 VFHC
 VFCO
 VFCO2
 VFO2
 Mtw2
 pf2

 2.00E-07
 0.00008
 0.01159
 0.1865
 28.9314516
 526,878

Performance factor adjusted for fuel density:

526,878

**% Change PF = 6.93 %

Company Name: A.T. Massey Location Sprouce Creek 4/17/94 Date: Test Portion: Baseline Stack Diam. 12 Inches Engine Type: EMD 567 D3 Mile/Hrs Equipment Type: ID #: 2598 Locomotive Baro 30.12

Fuel Sp. Gravity(SG 0.8300 Temp:

Time:

Notch	Exh (temp	e kvelnen	0(0)	11(6	C(02	O2	
8	334.6	8.1	0.01	5	1.67	18	
8	331	8.1	0.01	5	1.67	18	
8	334	8.1	0.01	8	1.68	17.9	
8	334.8	8.1	0.01	5	1.66	17.9	
8	335	8.1	0.01	5	1.68	17.9	
8	335.4	8	0.01	5	1.69	17.9	
8	338	8	0.01	6	1.69	17.8	
8	337	8	0.01	6	1.68	17.8	
8.000	334.975	8.063	.010	5.625	1.678	17.900	Mean
0	2.082409319	0.05175492	1.24453E-10	1.06066017	0.01035098	0.07559289	Std Dev

 VFHC
 VFCO
 VFCO2
 VFO2
 Mtw1
 pf1

 5.63E-06
 0.0001
 0.016775
 0.179
 28.9847263
 364,298

Company Name: A.T. Massey Location: Sprouce Creek Test Date: 7/17/94 Test Portion: Treated Stack Diam: 12 Inches Engine Type: EMD 567 D3 Mile/Hrs: Equipment Type ID #: Locomotive 2598 Baro: 30.04 Fuel Sp. Gravity: 0.83 95.2 Temp: SG Corr Factor: Time:

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
8	328.6	7.9	0.01	1	1.48	17.9	1.2ml Har-13/00/ 1111
8	332.8	7.9	0.01	1.2	1.5	17.9	
8	340.8	7.9	0.01	1.2	1.48	17.9	
8	345.8	7.9	0.01	1.2	1.58	17.7	
8	351.6	7.9	0.01	1.2	1.47	17.8	
8	352.4	7.9	0.01	1.2	1.48	17.8	
8	354.8	7.9	0.01	1.2	1.47	17.8	
8	356.2	7.9	0.01	1.2	1.46	17.8	
8	359	7.9	0.01	1.2	1.45	17.8	
0.000	246 000	7.000	010	1.150	1 406	17.000	
8.000	346.889	7.900	.010	1.178	1.486		Mean
0	10.72245826	1.1921E-07	1.64636E-10	0.06666667	0.03811532	0.06666667	Std Dev

 VFHC
 VFCO
 VFCO2
 VFO2
 Mtw2
 pf2

 1.18E-06
 0.0001
 0.01485556
 0.178222222
 28.9506461
 411,240

Performance factor adjusted for fuel density:

411,240

**% Change PF= 12.89 %

Table 1:
Summary of Carbon Balance Fuel Consumption Changes

<u>Unit</u>	Engine	THROTTLE	% Change Fuel Consumption
1	CAT 3412	Full	- 5.69
2	CAT 3412	Full	- 9.88
2598	EMD 567	4	- 11.33
2598	EMD 567	6	- 6.93
2598	EMD 567	8	- 12.89
Average:			- 9.34

Table 2: Comparison of Smoke Spot Numbers

Unit No.	Base SS#	Treated SS#	% Change
1	9.0	7.0	22
2	9.0	7.0	22
2598 (4)	3.0	1.0	66
2598 (6)	3.5	1.5	57
2598 (8)	7.0	3.5	50
Average:			43

Figure 1 CARBON MASS BALANCE FORMULAE

ASSUMPTIONS:

 $C_{12}H_{26}$ and SG = 0.82

Time is constant Load is constant

DATA:

Mwt = Molecular Weight

pf1 = Calculated Performance Factor (Baseline) pf2 = Calculated Performance Factor (Treated)

PF1 = Performance Factor (adjusted for Baseline exhaust mass) PF2 = Performance Factor (adjusted for Treated exhaust mass)

CFM = Volumetric Flow Rate of the Exhaust

SG = Specific Gravity of the Fuel

VF = Volume Fraction

d = Exhaust stack diameter in inches Pv = Velocity pressure in inches of H₂0

P_B = Barometric pressure in inches of mercury

Te = Exhaust temperature ${}^{O}F$

VFHC = "reading" \div 1,000,000

 $\begin{array}{lll} \text{VFCO} & = \text{"reading"} \div 100 \\ \text{VFCO}_2 & = \text{"reading"} \div 100 \\ \text{VFO}_2 & = \text{"reading"} \div 100 \\ \end{array}$

EQUATIONS:

$$Mwt = (VFHC)(86) + (VFCO)(28) + (VFCO_2)(44) + (VFO_2)(32) + [(1-VFHC-VFCO-VFCO_2-VFO_2)(28)]$$

pf1 or pf2 =
$$\frac{3099.6 \text{ x Mwt}}{86(\text{VFHC}) + 13.89(\text{VFCO}) + 13.89(\text{VFCO}_2)}$$

CFM =
$$(d/2)^2\pi$$
 • 1096.2 P_V
144 1.325 $(P_B/ET + 460)$

$$PF1 \text{ or } PF2 = \frac{\text{pf x (Te+460)}}{CFM}$$

FUEL ECONOMY: PERCENT INCREASE (OR DECREASE) PF2 - PF1 x 100

SAMPLE CALCULATION FOR THE CARBON MASS BALANCE

BASELINE:

Equation 1 (Volume Fractions)

VFCO
$$= 0.017/100$$

 $= 0.00017$

$$VFCO_2 = 1.937/100$$

= 0.01937

$$VFO_2 = 17.10/100$$

= 0.171

Equation 2 (Molecular Weight)

Mwt1 = 28.995

Equation 3 (Calculated Performance Factor)

$$pf1 = \underbrace{3099.6 \times 28.995}_{86(0.0000132) + 13.89(0.00017) + 13.89(0.01937)}$$

$$pf1 = 329,809$$

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2\pi}{144}$$
 • $\frac{1096.2}{1.325} \frac{Pv}{\{P_B/(Te + 460)\}}$

d =Exhaust stack diameter in inches

Pv = Velocity pressure in inches of H_20

P_B =Barometric pressure in inches of mercury

Te =Exhaust temperature ^oF

CFM =
$$\frac{(10/2)^2\pi}{144}$$
 • $\frac{1096.2}{1.325\{30.00/(313.100 + 460)\}}$

$$CFM = 2358.37$$

Equation 5 (Corrected Performance Factor)

$$PF1 = \frac{329,809(313.1 \text{ deg F} + 460)}{2358.37 \text{ CFM}}$$

$$PF1 = 108,115$$

TREATED:

Equation 1 (Volume Fractions)

VFCO =
$$.013/100$$

= 0.00013

$$VFCO_2 = 1.826/100$$

= 0.01826

$$VFO_2 = 17.17/100$$

= 0.1717

Equation 2 (Molecular Weight)

$$Mwt2 = (0.0000146)(86) + (0.00013)(28) + (0.01826)(44) + (0.1717)(32)$$

$$+ [(1-0.0000146-0.00013-0.01826-0.1717)(28)]$$

Mwt2 = 28.980

Equation 3 (Calculated Performance Factor)

pf2 =
$$3099.6 \times 28.980$$

86(0.0000146)+13.89(0.00013)+13.89(0.01826)

$$pf2 = 349,927$$

Equation 4 (CFM Calculations)

CFM =
$$(d/2)^2 \pi$$
 • 1096.2 Pv
144 1.325 { $P_B/(Te + 460)$ }

d =Exhaust stack diameter in inches

Pv = Velocity pressure in inches of H_20

P_B =Barometric pressure in inches of mercury

Te =Exhaust temperature ${}^{O}F$

CFM =
$$\frac{(10/2)^2\pi}{144}$$
 • $\frac{1096.2}{1.325\{29.86/(309.02 + 460)\}}$

CFM = 2320.51

Equation 5 (Corrected Performance Factor)

$$PF2 = \frac{349,927(309.02 \text{ deg F} + 460)}{2320.51 \text{ CFM}}$$

= 115,966

Fuel Specific Gravity Correction Factor

Baseline Fuel Specific Gravity - Treated Fuel Specific Gravity/Baseline Fuel Specific Gravity +1

$$.840 - .837 / .840 + 1 = 1.0036$$

$$PF2 = 115,966 \times 1.0036$$

$$PF2 = 116,384$$

Equation 6 (Percent Change in Engine Performance Factor:)

Note: A positive change in PF equates to a reduction in fuel consumption.

Item: 2 Code:	CWV										
1PM Sun 17 A	pril 1	WEST	V.	IRGINI	A this	hour	r		TOD	AY'S	S DATA
TOWN	WEATHER	TEME	. 1	NIND :	FLSLK	VIS	HUM	BRMTR	HI	LOV	V PCPN
Wheeling	mstly cldy	62	W	11G23	54	20	35%	30.02s			
Morgantown	mstly cldy	63	NW	20G24	51	25	28%	30.00s	63	40	
Clarksburg	ptly cldy	62	W	21G29	49	25	26%	30.04f	62	44	
Parkersburg	ptly cldy	64	NW	11G29	57	20	25%	30.10r	64	38	
Elkins	ptly cldy	62	NW	21G31	49	25	24%	30.06s	62	38	
Martinsburg	mstly cldy	64	W	17G37	54	25	26%	29.94s	64	39	
Huntington	clear	67	NW	14G26	59	20	31%	30.12s	67	51	Trace
Charleston	clear	66	W	11G30	60	20	24%	30.10s	66	45	0.03
Beckly	clear	62	NW	22G30	49	40	21%	30.12s	62	41	
Lewisburg	clear	63	W	14G28	54	20	37%	30.06f	63	41	
White SulfSpg											
Bluefield	clear	64	W	18G26	53	20	22%	30.11s	64	46	
******	******	***	***	****	****	****	****	*****	****	***	******

Item: 4 Code:	CWV									
(Yo) ₃₽M Sun 17 Ju	ıly	WEST	VIRGIN	IIA this	hou	r		TOD.	AY'S	DATA
TOWN	WEATHER	TEMP	WIND	FLSLK	VIS	HUM	BRMTR	HI	LOW	PCPN
Wheeling	haze	83	SW 5	96	6	59%	30.08f	84	76	
Morgantown	haze	83	S 6	96	6	59%	30.08f	84	63	
Clarksburg	ptly cldy	80	8 W	93	7	65%	30.09f	80	64	
Parkersburg										
Elkins	hvy rain	75	CALM	89	7	79%	30.16f	75	60	0.63
Martinsburg										
Huntington	haze	85	S 7	99	5	57%	30.04s	85	70	
Charleston	ptly cldy		NE 6	99	10	65%	30.06r	83	67	0.02
Beckly	lgt rain	75	S 7	89	10	79%	30.16s	76	64	0.04
Lewisburg	light fog	70	CALM	85	3	97%	30.15f	75	61	
White SulfSpg										
Bluefield	mstly cldy	77	W 9	89	7	69%	30.17r	82	65 '	Trace
*********	******	***	*****	*****	***	****	******	****	***	******

Interim Report A.T. Massey Field Trial of FPC-1 Fuel Performance Catalyst

Prepared by UHI Corporation Provo, Utah

May 3, 1994

I. Introduction

FPC-1 Fuel Performance Catalyst is a burn rate modifier proven to reduce fuel consumption and increase engine horsepower in several recognized, independent laboratory tests, and dozens of independent field trials. The catalyst also has a positive impact upon the products of incomplete combustion, primarily soot (smoke) and carbon monoxide.

The intent of the current trial at A.T. Massey is to determine the degree of fuel consumption, smoke and carbon monoxide reduction resulting from the addition of the FPC-1 catalyst to the # 2 diesel fuelling a select fleet of haul trucks. The test methodology for determining fuel consumption is the carbon mass balance (CMB). The CMB method measures the carbon containing products of the combustion process (CO2, CO, HC) found in the exhaust, rather than directly measuring fuel flow into the engine.

This report summarizes the baseline fuel emissions data and computes the engine performance factors (mass flow rates) for the same.

II. Discussion of Carbon Mass Balance Method

The data collected during the baseline fuel carbon balance test are summarized on the attached computer printouts. The data provides the volume fraction (VF) of each gas is determined and the average molecular weight (Mwt) of the exhaust gases computed. Next, the engine performance factor (pf) based upon the carbon mass in the exhaust is computed. The pf is finally corrected for intake air temperature and pressure, and total exhaust mass yielding a corrected engine performance factor (PF). The baseline PFs are tabulated on Table 1 below. The baseline PFs will be compared to FPC-1 treated fuel PFs and a percent change in mass carbon flow rate (fuel consumption) computed. This percent change equates to the fuel consumption change created by the addition of FPC-1.

Also, the treated fuel PF must be corrected for any change in fuel density (measured as specific gravity), and therefore, energy content. The baseline fuel density is used as the reference. No correction factor is shown in the attached printouts. These will be tabulated and shown in the final report.

The CMB procedure is conducted while the engine is operated under steady-state conditions at a high idle. No load is placed on the engine. Consequently, the engine is tested while operating under conditions conducive to high efficiency and low emissions of the products of incomplete combustion. The CMB results, therefore, represent minimum improvements, and FPC-1 created engine efficiency should be higher under high load/transient operation.

Table 1. Comparison of Baseline PFs

<u>Unit No.</u>	Engine Type	Baseline PF
2	CAT 3412	56,921
1	CAT 3412	55,593
2598 (Notch 4)	EMD 567 D3	73,350
2598 (Notch 6)	EMD 567 D3	43,466
2598 (Notch 8)	EMD 567 D3	26,557

III. Discussion of Bacharach Smoke Spot Method

Smoke density was determined using the Bacharach Smoke Spot method. The Bacharach method draws a constant volume of exhaust gas through a filter medium. The particulate in the exhaust gas sample collects on the surface of the filter medium. The surface is darkened by the particulate according to the density of the particulate in the exhaust sample. The greater the particulate density, the darker the color. The Bacharach smoke scale ranges from 0 to 9, with 0 being a white, particulate free filter, and 9 being a completely black filter.

The smoke spot (density) numbers for each engine tested are shown on Table 2 below. The FPC-1 treated smoke spot numbers will be compared to the baseline smoke numbers.

Table 2: Smoke Numbers

<u>Unit No.</u>	Smoke No.
2	9.0
1	9.0
2598 (Notch 4)	3.0
2598 (Notch 6)	3.5
2598 (Notch 8)	7.0
Fleet Average:	6.3

IV. Summary

The baseline CMB and Bacharach Smoke Spot procedures have been completed at A.T. Massey. The Bacharach Smoke Spot test has also been done. Carbon monoxide emissions are a part of the CMB, and therefore, are also available for comparison to the treated fuel concentrations.

The A.T. Massey fuel system is treated with FPC-1. The engine preconditioning period will be completed after approximately 500 hours of engine operation.

Company Name:	A.T. Massey	Location	Sprouse Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	8	Inches		
Engine Type:	CAT 3412	Mile/Hrs	18728			
Equipment Type:	Bull dozer	ID #:	2		Baro	30.12
Fuel Sp. Gravity(SG		Temp:			Time:	1240

RPM	Exh Temp	Pv Inch	C(0)	He	002	0)2	
Full Throttle	467.8	2.8	0.03	8	3.25	15.5	
Full Throttle	468.8	2.8	0.03	8	3.25	15.4	
Full Throttle	468.8	2.8	0.03	8	3.24	15.4	
Full Throttle	469.2	2.8	0.03	8	3.23	15.4	
Full Throttle	469.8	2.8	0.03	8	3.25	16.1	
Full Throttle	469.2	2.8	0.03	8	3.25	16.1	
Full Throttle	469.4	2.8	0.03	8	3.25	16.2	
Full Throttle	470	2.8	0.03	8	3.23	16.3	
Full Throttle	470.4	2.8	0.03	8	3.23	16.3	
Full Throttle	469.8	2.8	0.03	8	3.23	16.3	
#DIV/0!	469.320	2.800	.030	8.000	3.241	15.900	Mean
#DIV/0!	0.743564986	0	0	0	0.00994429	0.4163332	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
8.00E-06	0.0003	0.03241	0.159	29.155024	189,152	56,921

Company Name:	A.T. Massey	Location:	Sprouse Creek		Test Date:
Test Portion:	Treated	Stack Diam:	8	Inches	
Engine Type:	CAT 3412	Mile/Hrs:			
Equipment Type	Bull dozer	ID #:	2		Baro:
Fuel Sp. Gravity: SG Corr Factor:		Temp:			Time:

RPM	Diving (emp	Pylineir	(8)	He	€02	02	
					16	2	
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Mean
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
#DIV/0!						

Performance factor adjusted for fuel density:

#DIV/0!

Company Name:	A.T. Massey	Location	Sprouse Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	8	Inches		
Engine Type:	CAT 3412	Mile/Hrs	15690			
Equipment Type:	Bull dozer	ID #:	1		Baro	30.12
Fuel Sp. Gravity(SG		Temp:				

RPM	Exh Temp	Pv Inch	CO	HC	CO2	02	
Full Throttle	468.8	2.9	0.03	9	3.25	15.6	
Full Throttle	473.6	2.9	0.03	10	3.23	15.7	
Full Throttle	474.4	2.9	0.03	8	3.23	16	
Full Throttle	475	2.9	0.03	7	3.9	16	
Full Throttle	475	2.9	0.03	8	3.2	15.9	
Full Throttle	475.2	2.9	0.03	7	3.19	15.9	
Full Throttle	474.8	2.9	0.03	8	3.18	15.9	
Full Throttle	474.8	2.9	0.03	9	3.18	16.1	
Full Throttle	475.4	2.9	0.03	9	3.17	16.1	
Full Throttle	475.2	2.9	0.03	9	3.17	16.1	
#DIV/0!	474.220	2.900	.030	8.400	3.270	15.930	Mean
#DIV/0!	1.971913904	5.6196E-08	0	0.96609178	0.22310934	0.17029386	Std Dev

Time:

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
8.40E-06	0.0003	0.0327	0.1593	29.1608872	187,516	55,593

Company Name:	A.T. Massey	Location:	Sprouse Creek		Test Date:
Test Portion:	Treated	Stack Diam:	8	Inches	
Engine Type:	CAT 3412	Mile/Hrs:			
Equipment Type	Bull dozer	ID #:	1		Baro:
Fuel Sp. Gravity: SG Corr Factor:		Temp:			Time:

RPM	Exh Temp	Pv Inch	CO	HC	CO2	O2	
	*						
//DTX//01	#DTY/01	#DIX/01	#DIX/01	#DTX/01	#DTT/01	#DIV/01	2.6
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Mean
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
#DIV/0!						

Performance factor adjusted for fuel density:

#DIV/0!

Company Name:	A.T. Massey	Location	Sprouce Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	12	Inches		
Engine Type:	EMD 567 D3	Mile/Hrs				
Equipment Type:	Locomotive	ID #:	2598		Baro	30.12
Fuel Sp. Gravity(SG		Temp:			Time:	1110

Notch	Exh Temp	Pv Inch	CO	ii(e	CO2	O2	
4	258.4	2.8	0.01	4	0.97	18.8	
4	258.8	2.8	0.01	4	0.97	18.8	
4	259.4	2.8	0.01	4	0.96	19	
4	259.6	2.8	0.01	3	0.96	19	
4	260.4	2.8	0.01	4	1.12	19	
4	262.4	2.7	0.01	4	0.95	19	
4	262.4	2.7	0.01	4	0.95	19	
4	262.6	2.8	0.01	3	0.95	19	
4.000	260.500	2.775	.010	3.750	.979	18.950	Mean
0	1.730400449	0.046291	1.24453E-10	0.46291005	0.0576783	0.09258201	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
3.75E-06	0.0001	0.0097875	0.1895	28.9148175	620,066	73,350

Company Name:	A.T. Massey	Location:	Sprouce Creek		Test Date:
Test Portion:	Treated	Stack Diam:	12	Inches	
Engine Type:	EMD 567 D3	Mile/Hrs:			
Equipment Type	Locomotive	ID #:	2598		Baro:
Fuel Sp. Gravity: SG Corr Factor:		Temp:			Time:

RPM	Exh Temp	Pv Inch	CO	HC	E(0)2	O2	
			1				
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Mean
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
#DIV/0!						

Company Name:	A.T. Massey	Location	Sprouce Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	12	Inches		
Engine Type:	EMD 567 D3	Mile/Hrs				
Equipment Type:	Locomotive	ID #:	2598		Baro	30.12
Fuel Sp. Gravity(SG		Temp:				

Notch	Exh Temp	Pv Inch	CO	ii(C	CO2	02	
6	293.8	5.3	0	2	1.24	18.8	
6	293.4	5.3	0.01	2	1.24	18.8	
6	294.8	5.3	0	2	1.24	18.8	
6	297.8	5.2	0.01	5	1.24	18.5	
6	298.6	5.2	0.01	6	1.24	18.4	
6	299.6	5.2	0.01	6	1.23	18.3	
6	300.8	5.2	0.01	6	1.24	18.2	
6.000	296.971	5.243	.007	4.143	1.239	18.543	Mean
0	2.956188022	0.05345225	0.0048795	2.03540098	0.00377964	0.2572751	Std Dev

Time:

 VFHC
 VFCO
 VFCO2
 VFO2
 Mtw1
 pf1
 PF1

 4.14E-06
 7.14286E-05
 0.01238571
 0.185428571
 28.940126
 492,738
 43,466

Test Date: Company Name: A.T. Massey Location: Sprouce Creek Test Portion: Treated Stack Diam: 12 Inches Engine Type: EMD 567 D3 Mile/H:s: ID #: 2598 Equipment Type Locomotive Baro: Fuel Sp. Gravity: Temp: SG Corr Factor: Time:

RPM	Exh Temp	Pv Inch	CO	He	CO2	O2	
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Mean
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
#DIV/0!						

Performance factor adjusted for fuel density:

#DiV/0!

Company Name:	A.T. Massey	Location	Sprouce Creek		Date:	4/17/94
Test Portion:	Baseline	Stack Diam.	12	Inches		
Engine Type:	EMD 567 D3	Mile/Hrs				
Equipment Type:	Locomotive	ID #:	2598		Baro	30.12
Fuel Sp. Gravity(SG		Temp:				

Exh Temp Pv Inch CO HC CO2 02 Notch 334.6 331 0.01 8 8.1 1.67 18 0.01 18 1.67 8 8.1 334 8.1 0.01 8 1.68 17.9 8 8 334.8 8.1 0.01 1.66 17.9 335 0.01 1.68 17.9 8 8.1 0.01 335.4 5 1.69 17.9 8 8 338 8 0.01 1.69 17.8 8 8 337 0.01 1.68 17.8

.010

1.24453E-10

5.625

Time:

1.678

1.06066017 0.01035098 0.07559289 Std Dev

17.900

Mean

VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1
5.63E-06	0.0001	0.016775	0.179	28.9847263	364,298	26,557

Company Name:	A.T. Massey	Location:	Sprouce Creek		Test Date:
Test Portion:	Treated	Stack Diam:	12	Inches	
Engine Type:	EMD 567 D3	Mile/Hrs:			
Equipment Type	Locomotive	ID #:	2598		Baro:
Fuel Sp. Gravity: SG Corr Factor:		Temp:			Time:

8.063

0.05175492

334.975

2.082409319

8.000

0

RPM	Exh Temp	Pv Inch	CO	He	€02	O2	
1							
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Mean
#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Std Dev

VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2
#DIV/0!						

Performance factor adjusted for fuel density:

#DIV/0!

^{**} A positive change in PF equates to a reduction in fuel consumption.

	Company: AT MASSY Location: SPROUSE Test Date: 4/17/94 Test Portion: Baseline: Treated: Exhaust Stack Diameter: 8 Inches										
	Engine Make/Model: AT 3412 Miles/Hours: 5690 I.D.#: 1 Type of Equipment: DOZER										
	Fuel Specfic Gravity: @:(°F)										
4	ometric Pr	essure:	i	nches of M	ercury			me: 1:05	PM		
t hand	RPM	Exhaust Temp °F	P Inches of H ₂ O #	% CO	HC ppm	% CO ₂	% O ₂	NO _x			
Da Pa		468.8	2.9	.03	9	3.25	15.6				
		473,6	2.9	.03	10	3.23	15.7		•		
		474,4	2.5	:03	8	3,23	16.0		0		
	The weak report of	475.0	2.9	-03	7	3,19	16.0	- September 1	Cel		
		47510	2.9	-03	8	3,20	15.9	_	·		
		475.2	2.9	:03	7	3.19	15.9				
		474.8	2,9	.03	8	3,18	15.9		0-1		
		474.8	0.9	103	9	3,18	16.1		caf		
		475.4	2.9	-03	9	3.17	16.1				
		475.2	2.9	.03	9	317	16.7				
	Names of Customer Personnel Participating in Test: Eng Tonys = 1800										
			BASE	eline				Chex	29		

Signature of Technicians:

Company TMASS TY Location: SPRINGE CREST Test Date: Treated: Exhaust Stack Diagram Treated: E	7/94 meter: Inches
Engine Make/Model AT 34 12 Miles/Hours: 8 718 I.D.# Type of Equipment: ROL MEER PROPERTY OF THE PROPERTY OF T	2 86
Fuel Specfic Gravity:	@:(°F)
Barometric Pressure: inches of Mercury	Start Time: 12:45 PM

RPM	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO _x	1
West of the second	9467.8	2.8	p 03	8	3,25	15.5		
1	468,8	816	,03	8	3.25	-15-2		
	468.8	2.8	.03	8	3.24	15-4		
	469.2	2,8	,03	8	3.23	15.4	ants:	ro
	469-8	2.8	103	8	3.25	16.1		
	469.2	2.8	103	8	7.25	16-6		
	469,4	2.8	-03	8	3-25	16.2		
	470,0	2.8	103	8	3.23	16.3		
	470,4	2.8	103	8	3.23	16=3		
	469,8	7.8	-0,2	8	223	16.3		1

Names of Customer Personnel Participating in Test:

Engins Jemy 1900 Swoht 9

Signature of Technicians:

the	Carbon Mass Balance Field Data Form											
1 K	`	Con Test	npany: <u>A 7</u> Portion:	-MASS () Baseline:	Location Trea	えりV-2 ミ (ited:	Exhaus	t Date: t Stack Dia	/17/9 meter:	U Inches	P3/2	
Xhare		Eng Typ	ine Make/ e of Equip	Model: Em	05670	3 Miles/					#) 2/1	
~~ ;	Ź	Fuel Specfic Gravity: 837 @:(°F)										
29 FC1	45	Bar	dmetric Pr	essure: 39	i. (Z) i	nches of M	ercury		Start Ti	me: <u>// : 10</u>	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
107	40 × 2	Lusen	TOTCH	Exhaust Temp °F	P Inches of H ₂ O ½	% CO	HC ppm	% CO ₂	% O ₂	May pro	Aris To	
0	0	Q	4	258,4	3.8	,0)	4	,97	18,8	364	1754 170°	
D	0	0	H	25818	2,8	-01	4	197	18,8			
٥	0	0	4	259,4	マッタ	-01	4	-94	190			
0	0	0	4	25-9.6	3.8	701	3女	196	19. ₀	35#	1750 180	
^		0	Ů.	260,4	2.5	-07	4	9.12	19.0	,	1	
0	0		4	262.4	シフ	101	4	- 95-	19.n	34	192018	
			4	262,4	2.7	,01	4	,95	19.0		837	
<u> </u>	0		Lp	262.6	2,8	-01	7	,95		33 #		
-Q_	07		4									
O	6	19	17									
Names of Customer Personnel Participating in Test:												
			-				-	*		Sr	nohetz	
					Sion	ature of Te	echnician	S:				

		n: Baseline:		Location: Test I				Date: Stack Diameter:Inches			
				Miles/Hours:			,			2.02	
	uel Specfic Gravity:				-			@:(°F)			
E	Barometric	Pressure: _	30,	inches of Mercury				Start Time:			
R	R	Exhau Temp	st P	Inches of H ₂ O	% CO	HC ppm	% CO₂	% O ₂	No.	oil with	1
	6	293	S 3	7,3	0.00	2	1,24		32#	le som	V
	6	293,	4 5	7.3	0,6	J	1.24	18.8		185. 175	-
	6	294.	8 5	3	0.00	2	1,24	18.8	×		
-	36	297.	8 5	12	0.01	5	1.24	18.5		188 18	
2	5 6	298	6 5	12	,0)	6	1,24	18.4	ų	190, 18	
0	6	299	,63	1.2	101	6	1.23	18-3	32£		ノ
0	6	300	, 8	572	101	6	124	18.2		195 /	Ç
Non	6										<i>'</i> (
Z		,				,					
	6										
		I	Vames o	f Custom	er Personn	el Partic	ipating in	Test:	Sim	ah a #	
									-0 /r C	ohet	
	-					1 - 2				J	
				Sign	ature of Te	echniciar	15:			RACIE !	

Fuel S	pecfic C	Model:						(°F)	
arom	etric Pr	essure:	ir	nches of M	ercury		Start Ti	me:	- Jang
I I	A VI	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO.	har.
	8	334,6	81	-01	5	1.6フ	18.0		190 17
	8	331.0	8.1	101	5	1,67	18.0	32#	
	8	3340	8.1	,0/	8	1.68	17.9		
	8	334,8	5.1	,01	5	1.66	1,79	-i/\ . \	1901
	8	335	8,1	101	5	1.68	1.79	-1/2/3/	
4	8	335,4	8,0	.01	3	1.69	17.9		19017
3 M-	8	338.0	8,0	-01	6	1.69	17,8		
8	8	377	8.0	10/	6	1.68	1728		190 17
Ш_	8			,					
	8	1							
		Name	es of Custom	er Personi	nel Partic	ipating in	Test:		
								Sm	al x

Company: A T MASSY Location: PROUSE CREST, Test Portion: Baseline: Treated: Exhan	est Date: 7/17/94 ust Stack Diameter: & Inches
Engine Make/Model: <u>CAT 34/2</u> Wiles/Hours: Type of Equipment: <u>DOZER</u>	<u>//838</u> I.D.#:/
Fuel Specfic Gravity:	@: 92'5 (°F)
Barometric Pressure:inches of Mercury	Start Time: 18. 45 Juster

PPM.	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC s	% CO ₂	% O ₂	NO _x
Therity	472.8	2.6	,03	3.09	3.09	15.8	
	471.2	2-6	, 63	6	3,08	15.5	
	471.2	2.6	103	6	3.09	15.5	-
	471.0	2.6	c 03	6	3,08	15-5	-
	471.0	2.6	-03	6	3.09	15.5	
	471.6	2.6	103	7	3,09	15.6	
	472.6	nu	103	6	3-10	15-6	
	473.0	2.6	03	6	3,09	1556	.,
				,			

Names of Customer Personnel Participating in Test:	Engine Temp = 180
· · · · · · · · · · · · · · · · · · ·	Imak Chip = 7
Signature of Technicians:	

2/17/59

 \mathcal{N}

Barometric Pressure: 2010

Company: A TMASSEY Locatio Test Portion: Baseline:	nsprouse Caestlest Date Treated: Lexhaust State	e: 7/1>/94
Engine Make/Model: <u>CAT 341</u> Type of Equipment: <u>BUCL DO</u>	2 Mes/Hours/995	
Fuel Specific Gravity: 4810		@: <u>93</u> (°F)
Barometric Pressure: 2010	inches of Mercury	Start Time: 1830 Coulem

RPM	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO.
	460,6	2.6	,03	6	2.97	15.8	-
H	Marine No.	2.6	,03	5	2.97	15.8	
Far	467,4	2.6	.03	6	2.95	15.7	
7	467.6	2-6	,03	6	2.95	1577	
\$	417.8	2.6	.03	7 ,	7.94	15.7	
	467,8	2.6	,03	6	2.94	15.7	
	468,0	an 2. L	\$ Ga	ibra	4,92	15.8	
	468.4	26	,03	6	2,92	16.D	٠, ٢
	468.4	2.6	,03	6	7.92	16.0	
						7	

England 190 Emphy = 7 Names of Customer Personnel Participating in Test: Signature of Technicians:

	Con Test	pany: AT Portion:	MASSES Baseline:	رک Location <u>: ک</u> Trea	PRAUSS ated:	CRSETEST Exhaust	t Date: <u>7/</u> : Stack Dia	12 /97 meter: E	Inches	9	0
	Eng Typ	ine Make/l e of Equip	Model: <u>EM</u> U ment: <u> </u>	577 D.	Miles/	Hours:_ <i>N</i>	<u>A</u> I.D.:	#: <u>25</u> 5	98		
			Gravity:	1					5.2 (°F)		
	Dar		essure:	and the second s	nches of M	and the	Brown and Brown	· care in a sec	me:_ <i>]65</i>	127773 	Feate
		PDM Notch	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	DIL PASSOR	المراجع المراجع	1 /3/
2		4	270	2.4	.01	0	,89	19.2	33	175	179
F)	4			,01	0	.89	19.1	33	118	182
7	2	-4			,01	0	188	19.1	32	181	184
d	J	4			.01	0	188	19.1	31	182	185
I	•	4	272.4	2.4	-01	0	,87	19.0	29	186	188
	2	4	273		.01	0	187	19.1	28	188	190
7		4									X
B)	4	*						Þ		
		4									
		4									

Names of Customer Personnel Participating in Test:

Signature of Technicians:

Smolo=#/

Company: A TMASSEY Locations PROUSE CREEK Test Date: 7/17/94

Test Portion: Baseline: Treated: V Exhaust Stack Diameter: Inches

Engine Make/Model: Smass6703 Miles/Hours: NA I.D.#2598

Type of Equipment: Locations PROUSE CREEK Test Date: 7/17/94

Type of Equipment: Locations PROUSE CREEK Test Date: 7/17/94

Type of Equipment: Locations PROUSE CREEK Test Date: 7/17/94

Type of Equipment: Locations PROUSE CREEK Test Date: 7/17/94

Type of Equipment: Locations PROUSE CREEK Test Date: 7/17/94

Fuel Specfic Gravity: > 830

@: 95.2 (°F)

Barometric Pressure:

inches of Mercury

Start Time:____

9000	RM :	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	DIE PRESSURS	Oil Tomp	Ha
	4	316.8		0.00	0	1.48	18.6	28	192	18
	G	319.0		01	0	1.18	18.8	18	192	
1.0	8	317.6		-01	0	1.18	18.6			
A	6	315.6		0	0	1.16	18.7	28	193	1
	6	35.0		0x1	3	1.15	18.7	78	198	19
	B	315.4		-01	0	1.15	18.7	28	200	1
	8	315.2		-01	1	1.15	18.7	28	303	19
	6	316.2		-00	1	1.15	187	28	205	
(6	32116	Ents C	10/	at	1.14	18.6	28	208	2
	6	300.8	3-3	101	0	1.15	1	21	210	20

Names of Customer Personnel Participating in Test:

Simeture of Tashnisians

Signature of Technicians:

inches of Mercury

Barometric Pressure:

Company: A TMA TTEY Location SAROSE CREEK Test Date: 7/17/94

Test Portion: Baseline: Treated: Exhaust Stack Diameter: Inches

Engine Make/Model: Emp 567 0 > Miles/Hours: WA I.D.#: 2598

Type of Equipment: Location Fig. 67 0 > Wiles/Hours: WA I.D.#: 2598

Fuel Specfic Gravity: 830 @: 95.2 (°F)

	RIM Notca	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC :	% CO ₂	% O ₂	NO. OIL PRESSURE	sil tomy	Wate
	8	328,6	7,9	.01	1.0	14,8	17.9		190	
	8	332.8	-	101	1.2	25.0	17,9			
	8.	340,8		101	1,2	14.8	17,9	27	193	191
	8	34578		101	1,2	15.8	17.7	2)	201	19/
	8	357,6		-01	1.2	14.7	17.8	v		
	8	352-4	z.	-01	1.2	14.8	17.8	2)	209	203
	S	354.8		01	1.2	14.7	17.8			\times
	8	356.2		101	1.2	14.6	17.8	27	213	213
and a street of the street of	8	359.6	7.9	101		14.5				
	8				let.	,				

Names of Customer Personnel Participating in Test:

Smoke = 3,5-

Start Time:____

Signature of Technicians:

B	Carbon Mass Balance Field Data Form											
A K		Γest	Portion:	-MASSE Baseline:	Trea	ited:	Exhaust	t Stack Dia	meter:	Inches	P3 %	
S. Para	The state of the s	Eng Typ	ine Make/l e of Equip	Model: Em	0567D	3 Miles/	Hours N F	I.D.:	#:259.	8 (LOCO	制品等	
201	-		Specific Cometric Pro	Gravity: essure:).(Z	nches of M	ercury		@: Start Ti	(°F)	19 23	
REL	AX	N. W.	S SDEME	Exhaust.	P Inches	% CO	HC (% CO ₂		902		
No.	703	ک	Ko CA	Temp °F	of H ₂ O		ppm	1		all prog	Pleases	
0	0	Q	4	258,4	3.8	,0)	4	,97	18,8	36#	1754 170%	
D	0	0	H	81826	2,8	01	4	197	18,8		• .	
0	0	0	4	259,4	2,8	-01	4	196	190			
0	0	0	4	25-9.6	2.8	701	3女	196	19.0	35#	1750 150	
0	g	C	4	260.4	2,5	-07	4	9.12	19.0		3	
0	0		4	262.4	シン	101	4	- 95	19.n	344	180°183	
0	0		4	262,4	2.7	101	4	195	19.0			
9	0	0	4	262.6	2.8	-01	3	,95	1900	33 #		
_	0		4									
0	6	6	17									
Names of Customer Personnel Participating in Test:												
			-		· · · · · · · · · · · · · · · · · · ·					Sr	nohetz	
					Sign	ature of To	echnician	s:				

Carbon Mass Balance Field Data Form ___ Location:__ Test Date:__ Company:__ Test Portion: Baseline:_____ Treated:____ Exhaust Stack Diameter: __Inches Miles/Hours: I.D.#:259 Engine Make/Model: ____ Type of Equipment: @:____(°F) Fuel Specfic Gravity: _ 70. (____ inches of Mercury Start Time:_ P Inches Exhaust % CO HC Temp 'F of H₂O ppm 190 18.0 101 3310 しるフリアの 0/ 190 175 ,01 1.68 101 8.0 190 177 シフ 1728 11 Names of Customer Personnel Participating in Test: Smal &>

Signature of Technicians:

Pace 8 7

el Specfic	Gravity:	20,12 i	nches of M	ercury		@: Start Ti	, ,	
REME	Exhaust Temp ?E	P Inches of H ₂ O 2	% CO	HC ppm	% CO ₂	% O ₂	No prose	oil som
6	293,8	5,3	0:00	2	1,24	18,8	32#) 50
6	293,4	5.3	0.0	J	1.24	18.8	,	185
6	294.8	5.3	0.00	2	1,24	18.8		
6	297.8	5.2	0.01	5	1.24	18.5		18
6	298.6	5.2	·0)	6	1,24	18.4		198
6	299,6	5.2	101	6	1.23	18-3	32E	
6	300,8	572	101	6	124	18.2		19
6								-3
6	-							
6								
	Nam	es of Custom	er Personi	nel Partic	cipating in	Test:	Sm	- oho
							Sm	3-0

Company: A.T. Massey Location: Sprouse Creek Test Date: 04/17/94 Test Portion: Baseline: XXXX Treated: Exhaust Stack Diameter: 8 Inches
Engine Make/Model: Cat 3412 XXXX Hours: 18,728 I.D.#: 2 Type of Equipment: Bull Dozen
Fuel Specfic Gravity:(°F)
Barometric Pressure: 30,1 inches of Mercury Start Time: 12:40 P Smoke chip for test = 9; Engine Temperature for test = 190° F

RPM	Exhaust Temp °F	P Inches of H ₂ O ½	% CO	HC ppm	% CO ₂	% O ₂	NO.
UNIT RUN AT	467.8	2.8	.03	8	3.25	15.5	
FULL THROT- TLE	468.8	2.8	. 0 ⁻ 3	8	3.25	15.4	
ENT!RE TEST	468.8	2.8	.03	8	3.24	15.4	
	469.2	2.8	.03	8	3.23	15.4	
	CAL	BRATION	- 2 MINU	ITE DEL	АУ		
	469.8	2.8	.03	8	3.25	16.1	
	469.2	2.8	.03	8	3.25	16.1	
	469.4	2.8	.03	8	3.25	16.2	
	470.0	2.8	.03	8	3.23	16.3	17.39
	470.4	2.8	.03	8	3.23	16.3	-
	469.8	2.8	.03	8	3.23	16.3	

Names of Customer Personnel Participating in Test: Independent Observers

E. M. (Frnie) Rogers	Richard L. (pete)	Runyon
- Control of the cont		The same of the sa

Signature of Technicians:

Craig Flinders

Kim LeBaron

X

Company: A.T. Massey Location: SPROUSE CREEKTest Date: 04/17/94
Test Portion: Baseline: XXX Treated: Exhaust Stack Diameter: 8 Treated: Exhaust Stack Diameter: 8 Inches

Engine Make/Model: CAT 3412 Miles/Hours: 15690 I.D.#: 1

Type of Equipment: BULLDOZER

Fuel Specfic Gravity:

@:_____(°F)

Barometric Pressure: 30.17 inches of Mercury Start Time: 1:05 PM Engine Temperature for test = 180°F

molec en	up you rea				ip cross-care		
RRAL	Exhaust Temp °E	P Inches of H ₂ O	%-CO	HC ppm	% CO₂	% O ₂	NO.
UNIT RUN AT	468.8	2.9	.03	9	3.25	15.6	
FULL THRO- ttle	473.6	is a seven	n minute	pause 10	betwee 3.23	n read 15.7	ing 1 & 2
ENTIR: TEST	474.4	2.9	.03	8	3.23	16.0	
	CALT 475.0	BRATION - 2.9	2 MINU .03	TE DEL 7	AY 3.19	16.0	
	475.0	2.9	.03	8	3.20	15.9	
	475.2	2.9	.03	7	3.19	15.9	
	474.8	2.9	.03	8	3.18	15.9	
	CAL:	BRATION - 2.9	2 MINU .03	TE DEL	Ay 3.18	16.1	1.0
	475.4	2.9	.03	9	3.17	16.1	
	475.2	2.9	.03	9	3.17	16.1	

Names of Customer Personner Participating in Test: Independent Observers

E. M. (Ernie) Rogers Richard L. (Pete) Runyon

Signature of Technicians:

Craig Flinders

Kim LeBaron

Company: A.T. Massey Location: SPROUSE CREE Test Date: 04/17/94
Test Portion: Baseline: XXX Treated: Exhaust Stack Diameter: 8 Inches

Engine Make/Model: CAT 3412 Miles/Hours: 15690 I.D.#: 1

Type of Equipment: BULLDOZER

Fuel Specfic Gravity:

Barometric Pressure: $\frac{30.17}{\text{Smoke Chip for test = 9}}$ inches of Mercury Start Time: $\frac{1:05 \text{ PM}}{\text{Engine Temperature for test = 180°F}}$

RPM	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO _x
UNIT RUN	468.8	2.9	.03	9	3.25	15.6	
AT FULL THRO-		is a sever		pause 10			ing 1 & 2
ttle ENTIRI TEST							
		2.9 BRATION -		8 TE_DEL		16.0	
	475.0	2.9	.03	7	3.19	16.0	
	475.0	2.9	.03	8	3.20	15.9	
	475.2	2.9	.03	7	3.19	15.9	
-	474.8	2.9	.03	8	3.18	15.9	
	474.8	BRATION -	.03	TE DEL	3.18	16.1	
	475.4	2.9	.03	9	3.17	16.1	
	475.2	2.9	.03	9	3.17	16.1	

Names of Customer Personnel Participating in Test: Independent Observers

E.	Μ.	(Ernie)	Rogers	Richard	L.	(Pete)	Runyon

Signature of Technicians:

Craig Flinders

Kim LeBaron

Company: A.	T.Massey	Location: Sprouse	Creek Test Date:	04/17/94
Test Portion:	Baseline: XXX	X Treated:	Exhaust Stack	Diameter: 8 Inches
	Cat	3 4 1 2 X X X	x 18:728	2

Fuel Specfic Gravity: _______ @:_____(°

Barometric Pressure: 30,1 inches of Mercury Start Time: 12:40 PM Smoke chip for test = 9; Engine Temperature for test = 190° F

RPM	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO.
UNIT RUN AT	467.8	2.8	.03	8	3.25	15.5	
FULL THROT- TLE	468.8	2.8	. 0 [.] 3	8	3.25	15.4	
ENT!RE TEST	468.8	2.8	.03	8	3.24	15.4	
	469.2	2.8	.03	8	3.23	15.4	(1)
	CAL	BRATION	- 2 MINU	ITE DEL	AY		
	469.8	2.8	.03	8	3.25	16.1	
	469.2	2.8	.03	8	3.25	16.1	
	469.4	2.8	.03	8	3.25	16.2	
	470.0	2.8	.03	8	3.23	16.3	
	470.4	2.8	.03	8	3.23	16.3	
	469.8	2.8	.03	8	3.23	16.3	

Names of Customer Personnel Participating in Test: Independent Observers

F. M	(Frnio)	Ragens	Richard I	(pete)	Runyon

Signature of Technicians:

Craig Flinders Kim LeBaron

		Baseline:						Tl	7		
		/Model: pment:		Miles/I					2.05		
Fu	el Specfic	Gravity:				,		(°F)			
Ba	rometric P	ressure:	0,12 is	nches of M	ercury		Start Ti	me:			
Rolly	REME	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC *	% CO ₂	% O ₂	No proso	gil water		
	6	293.8	5,3	0:00	2	1,24	18,8	32#	1 100 1		
	6	293,4	5.3	0,0	J	1.24	18:8	,	185. 175		
	6	294.8	53	0,00	2	1,24	18.8				
The same of the sa	6	297,8	5.2	0.01	5	1.24	185		188 180		
Jan	6	298.6	5.2	»O)	8	1,24	18.4		190 185		
0	6	299,6	5.2	101	6	1.23	183	32E			
7	6	300,8	512	101	6	124	18.2		195 190		
S	6										
	6										
	6										
		Name	es of Custom	er Personi	iel Partic	ipating in	Test:	Sm	ohe#		
	***************************************		was a second and a second and a second and						3.8		
	Signature of Technicians:										

Test	Portion:	Baseline:	Trea	ted:	Exhaust	: Date: : Stack Diam			303	
Engi	ne Make/ e of Equip	Model:oment:	Lucas	Miles/I	Hours:	1.D.#		Pr		
	. ^	Gravity:					@:	(°F)	In la	
Paro	ometric Pr	ressure:	in in	nches of M	ercury		Start Ti	me:	- Jahre "	
	RPM AL	Exhaust Temp °F	P Inches of H ₂ O *	% CO	HC ppm	% CO ₂	% O ₂	NO.	har fair	
	8	334,6	8,1	-01	5	1.6フ	18.0	-	190 170	
	8	331.0	8.1	101	5	1,67	18.0	324	,** ,	
	8	334,0	8.1	.01	8	1.68	17.9	0		
	8.	334,8	5.1	,01	5	1.66	1.79	-1X , ,	120 175	
	8	335	8,1	007	5	1.68	1.79	-1/x is/		
4	8	335,4	8,0	.01	3	1.69	17.9		190175	
Ø	8	338.0	8:0	-01	6	1.69	17,8			
8	8	377	8.0	40/	6	1.68	1718	1	120 177	
11	8			($\sqrt{}$	
	8								$\sqrt{}$	
,		Name	es of Customo	er Personn	iel Partic	ipating in	Test:		•	
				_			12	Im	ih x>	
	Signature of Technicians:									

I fate	Carbon Mass Balance Field Data Form Company: A T MASSY Location Test Portion: Baseline: Treated: Exhaust Stack Diameter: Inches											
S. Ash	Engine Make/Model: Emp56703 Miles/Hours: NA I.D.#:2598 (LOCO #) Type of Equipment: LOCO MOTIVE											
RS1	Fuel Specfic Gravity: Barometric Pressure: inches of Mercury Start Time: Start Time:											
178	5007	MAG	REMA Notal	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	and pres	Prost	
0	0	g	4	258,4	2.8	.01	4	,97	18,8	364	175° 4 170° 4	
D	0	0	H	25818	2.8	01	4	197	18.8			
0	0	0	4	259,4	2.8	-01	4	-96	190			
0_	0	0	4	25-9.6	2.8	0/	3氢	196	19.0	35#	1750 /EXV	
	a	0	4	260,4	2.5	-07	4	achthe 9.12	19.0		180	
6	0	a	4	262.4	シフ	201	4	- 95	19.0	344	180°183	
0		1	4	262,4	2.7	107	4	,95	19.0	<i>p</i> *	100	
9	0	07	4	262.6	2.8	-01	3	.95	190	33 #		
0	0		4									
O	6	9	4								/	
	Names of Customer Personnel Participating in Test:											
			;			_ ·				Sm	nohetz	
					Signa	iture of Te	echnicians	s:				

Company: A TMA FYEY Location FROSE CREEK Test Date: 7/17/94 Test Portion: Baseline: Location FROSE CREEK Test Date: 7/17/94 Test Portion: Baseline: Location FROSE CREEK Test Date: 7/17/94 Test Portion: Baseline: Location FROSE CREEK Test Date: 7/17/94	5
Engine Make/Model: <u>Emp 567 03</u> Miles/Hours: <u>NA</u> I.D.#: <u>259</u> 8 Type of Equipment: <u>Locomorave</u>	
Fuel Specfic Gravity: <u>830</u> @: <u>95.2</u> (9	F)
Barometric Pressure: inches of Mercury Start Time:	

RPM Notca	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO. OIL PRESSURE	oil tong	Water Tomo
8	328,6	7,9	.01	1.0	1348	17.9		190	
8	332.8		101	1.2	25.0	17.9			
8	340,8		101	1,2	14.8	17,9	27	183	191
8	34558		101	1,2	15.8	17.7	2)	201	19,
8	357.6		-01	1.2	14.7	17.8			
8	352.4		-01	1.2	14.8	17.8	2)	209	203
8	354.8		101	1.2	14.7	17.8			\times
8	356.2		101	1.2	14.6	17.8	27	213	213
8	359.6	7.9	101	1.2	14.5	17.8			
8	J.								

Names of Customer Personnel Participating in Test:

14

Signature of Technicians:

Smode = 3.5-

Carbon Mass Balance Field Data Form											
	Company: A TM A STEY Location PROUSE CREEK Test Date: 7/17/94 Test Portion: Baseline: Treated: 1 Exhaust Stack Diameter:Inches										
	Engine Make/Model: Smp 557 D3 Miles/Hours: N/A I.D.#2598 Type of Equipment: 2000007105										
	Fuel Specfic Gravity: > 830 @: 95.2 (°F)										
В	Barometric Pressure: inches of Mercury Start Time:										
Se Co	RPM	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO _x	O'N Tomo	Had	
Park S	6	316.8		0-00	0	1.48	18.6	18	192	18/	
n	G.	319.0		601	0	1.18	18.8	28	192		
<u></u>	.6	317.6		-01	0	1.18	18.6				
	6	315.6	-	0	0	1.16	18.7	28	193	188	
	6	375.0		0x1	3	1.15	18.7	28	178	192	
)	6	315.4		-01	0	1.15	18.7	28	200	195	
3	8	315.2		-01	1	1.15	18.7	28	202	193	
	6	316.2		-00	1	1.15	18.7	28	205	201	
	6	32116	ants C	101	at	1314	18.6	28	208	204	
	6	322.8	7.3	(0)	0	1.15	18.6	28	210	209	
Names of Customer Personnel Participating in Test:											
	Que 1,3								, 5		
			C:	tuma - 675	1			24ml	Υ	1	
	Signature of Technicians:										

	Gravity:	1	inches of M	lercury		•	5,2 (°F) ime:/65	D1713
RPM Notch	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	DIL PRESSORE	Les .
4	270	2.4	.01	0	,89	19.2	33	175
4			,01	0	.89	19.1	33	118
-4			101	0	188	1901	32	181
4			.01	0	188	19.1	31	182
4	272.4	2.4	-01	0	,87	19.0	29	186
4	273		.01	0	187	19.1	28	188
4							A ** 1	,
4			4					
4					4 **			
11							1	

Signature of Technicians:

Smoto = #/

Company: ATMASSEY Location FROUSE COESTIEST Date: 7 Test Portion: Baseline: Treated: Exhaust Stack Diar	neter: & Inches
Engine Make/Model: <u>CAT 34/2</u> <u>Wifes/Hours! 9958</u> I.D.# Type of Equipment: <u>BULL DOZER</u>	:_2
Fuel Specfic Gravity: 4810	@: <u>93</u> (°F)
Barometric Pressure: inches of Mercury	Start Time: 1830 Earlem

RPM	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO _x
	460,6	2.6	,03	6	2.97	15.8	-
A	467,4	2.6	.03	6	2.97	15.8	
Tay	467,4	2.6	.03	6	2.95	15.7	
7	467.6	2-6	,03	6	2.95	157.7	
3	467.8	2.6	.03	7	2.94	15.7	
	467.8	2.6	,03	6	2.94	15.7	
	468,0		\$ Ga	libro	d.92	15.8	
	468.4	26	,03	6	2,92	56.D	
	468.4	2.6	103	6	7.92)6.D	

Names of Customer Personnel Participating in Test:

Organic Signature of Technicians:

Company: A T MASSEY Location: PROUSE CREATEST Date: 7/ Test Portion: Baseline: Treated: Exhaust Stack Dia	17/94 Blaches Slaf 1
Engine Make/Model: <u>CAT 34/2</u> Miles/Hours: <u>16938</u> I.D.# Type of Equipment: <u>DOZER</u>	: <u>/</u>
Fuel Specfic Gravity:	@: 92:5 (°F)
Barometric Pressure: inches of Mercury	Start Time: 18.45

RPM full	Exhaust Temp °F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	NO _x
Therit	472.8	2.6	,0,3	3.09	3.09	15.8	_
	471.2	2-6	, 63	6	3,08	15.5	
	471.2	2.6	103	6	3.09	15.5	,
	471.0	2.6	03	6	3,08	15.5	
	471.0	2.6	203	6	3,09	15.5	
	471.6	2.6	to 20	7	3,09	15.6	
	472.6	D. L	\$ ref	6	3-10	15.6	
,	473.0	2.6	(03	6	3.09	1556	
				ć		"	

Names of Customer Personnel Participating in Test:	Engine Temp = 150
	Imoh Chip = 7

Signature of Technicians:

Sug-